Domain Audit Use CaseΒΆ

Cybersecurity firms and managed service providers (MSPs) use ReputeAPI to conduct comprehensive email security audits for their clients. This use case covers systematic domain validation, risk assessment, and compliance reporting.

🎯 Overview¢

Business GoalΒΆ

Provide clients with detailed email security assessments that identify vulnerabilities, quantify risk, and deliver actionable remediation plans.

Key BenefitsΒΆ

  • Systematic assessment of email security posture
  • Quantified risk scoring with industry benchmarks
  • Detailed remediation plans with implementation guidance
  • Compliance reporting for SOC2, ISO27001, and other standards
  • Competitive differentiation through advanced security analysis

Target IndustriesΒΆ

  • Cybersecurity consulting firms
  • Managed security service providers (MSSPs)
  • IT consulting companies
  • Compliance auditing firms
  • Penetration testing companies

πŸ“‹ Audit WorkflowΒΆ

Phase 1: Discovery & PlanningΒΆ

# 1. Collect client domains for assessment
client_domains = [
    "client-company.com",
    "marketing.client-company.com", 
    "support.client-company.com",
    "mail.client-company.com"
]

# 2. Initialize audit session
audit_session = {
    "client_id": "client_123",
    "audit_date": datetime.now(),
    "domains": client_domains,
    "scope": "comprehensive",  # basic, comprehensive, compliance
    "standards": ["SOC2", "ISO27001"]
}

Phase 2: Bulk Domain ValidationΒΆ

import reputeapi
from datetime import datetime
import json

# Initialize ReputeAPI client
client = reputeapi.Client(api_key="your_api_key")

def conduct_bulk_audit(domains):
    """Perform comprehensive audit of multiple domains"""
    results = []

    for domain in domains:
        try:
            # Get comprehensive security analysis
            validation = client.check(domain)

            # Calculate risk metrics
            risk_assessment = calculate_risk_score(validation)

            # Generate recommendations
            recommendations = generate_recommendations(validation)

            audit_result = {
                "domain": domain,
                "timestamp": datetime.now().isoformat(),
                "security_score": validation.score,
                "risk_level": risk_assessment["level"],
                "findings": validation.findings,
                "recommendations": recommendations,
                "compliance_status": check_compliance(validation)
            }

            results.append(audit_result)

        except Exception as e:
            print(f"Error auditing {domain}: {e}")
            continue

    return results

# Execute audit
audit_results = conduct_bulk_audit(client_domains)

Phase 3: Risk Assessment & ScoringΒΆ

def calculate_risk_score(validation):
    """Calculate comprehensive risk score based on findings"""

    risk_factors = {
        "spf_missing": 30,
        "dkim_missing": 25, 
        "dmarc_missing": 35,
        "weak_spf_policy": 15,
        "weak_dmarc_policy": 20,
        "dns_vulnerabilities": 25,
        "configuration_errors": 10
    }

    total_risk = 0
    findings = []

    # Analyze SPF configuration
    if not validation.spf.valid:
        total_risk += risk_factors["spf_missing"]
        findings.append({
            "type": "SPF Missing",
            "severity": "High",
            "description": "No SPF record found",
            "impact": "Email spoofing vulnerability"
        })
    elif validation.spf.policy == "~all":  # SoftFail
        total_risk += risk_factors["weak_spf_policy"]
        findings.append({
            "type": "Weak SPF Policy", 
            "severity": "Medium",
            "description": "SPF uses soft fail (~all)",
            "impact": "Reduced protection against spoofing"
        })

    # Analyze DKIM configuration
    if not validation.dkim.valid:
        total_risk += risk_factors["dkim_missing"]
        findings.append({
            "type": "DKIM Missing",
            "severity": "High", 
            "description": "No valid DKIM signature found",
            "impact": "Message authenticity cannot be verified"
        })

    # Analyze DMARC configuration
    if not validation.dmarc.valid:
        total_risk += risk_factors["dmarc_missing"]
        findings.append({
            "type": "DMARC Missing",
            "severity": "Critical",
            "description": "No DMARC policy found",
            "impact": "No protection against email spoofing"
        })
    elif validation.dmarc.policy in ["none", "quarantine"]:
        total_risk += risk_factors["weak_dmarc_policy"]
        findings.append({
            "type": "Weak DMARC Policy",
            "severity": "Medium",
            "description": f"DMARC policy is '{validation.dmarc.policy}'",
            "impact": "Limited protection against spoofing"
        })

    # Determine risk level
    if total_risk >= 80:
        risk_level = "Critical"
    elif total_risk >= 60:
        risk_level = "High"
    elif total_risk >= 30:
        risk_level = "Medium"
    else:
        risk_level = "Low"

    return {
        "score": total_risk,
        "level": risk_level,
        "findings": findings,
        "max_possible": 100
    }

Phase 4: Compliance MappingΒΆ

def check_compliance(validation):
    """Map findings to compliance standards"""

    compliance_mapping = {
        "SOC2": {
            "CC6.1": check_access_controls(validation),
            "CC6.7": check_transmission_integrity(validation), 
            "CC7.1": check_system_boundaries(validation)
        },
        "ISO27001": {
            "A.13.2.1": check_information_transfer(validation),
            "A.13.2.3": check_electronic_messaging(validation)
        },
        "NIST": {
            "SC-8": check_transmission_confidentiality(validation),
            "SC-20": check_secure_name_resolution(validation)
        }
    }

    compliance_status = {}

    for standard, controls in compliance_mapping.items():
        passed_controls = sum(1 for result in controls.values() if result)
        total_controls = len(controls)
        compliance_percentage = (passed_controls / total_controls) * 100

        compliance_status[standard] = {
            "percentage": compliance_percentage,
            "status": "Compliant" if compliance_percentage >= 80 else "Non-Compliant",
            "controls": controls
        }

    return compliance_status

def check_access_controls(validation):
    """SOC2 CC6.1 - Logical access security measures"""
    return validation.spf.valid and validation.dkim.valid

def check_transmission_integrity(validation):
    """SOC2 CC6.7 - Transmission data integrity"""
    return validation.dkim.valid and validation.dmarc.valid

def check_information_transfer(validation):
    """ISO27001 A.13.2.1 - Information transfer policies"""
    return (validation.dmarc.valid and 
            validation.dmarc.policy in ["quarantine", "reject"])

πŸ“Š Audit ReportingΒΆ

Executive Summary ReportΒΆ

def generate_executive_summary(audit_results):
    """Generate executive-level audit summary"""

    total_domains = len(audit_results)
    high_risk_domains = len([r for r in audit_results if r["risk_level"] in ["Critical", "High"]])
    average_score = sum(r["security_score"] for r in audit_results) / total_domains

    # Industry benchmarking
    industry_benchmark = get_industry_benchmark(client_industry)

    summary = f"""
    # Email Security Audit - Executive Summary

    ## Key Findings

    - **Total Domains Assessed**: {total_domains}
    - **Average Security Score**: {average_score:.1f}/100
    - **High Risk Domains**: {high_risk_domains} ({high_risk_domains/total_domains*100:.1f}%)
    - **Industry Benchmark**: {industry_benchmark} (You are {"above" if average_score > industry_benchmark else "below"} average)

    ## Critical Issues Identified

    {generate_critical_issues_summary(audit_results)}

    ## Recommended Actions

    1. **Immediate (0-30 days)**: Implement DMARC policies on high-risk domains
    2. **Short-term (1-3 months)**: Strengthen SPF configurations 
    3. **Medium-term (3-6 months)**: Deploy DKIM across all domains

    ## Business Impact

    - **Estimated Risk Reduction**: 85% with full remediation
    - **Compliance Improvement**: SOC2 compliance increases from 45% to 95%
    - **ROI**: $2.3M in prevented breach costs over 3 years
    """

    return summary

Technical Details ReportΒΆ

def generate_technical_report(audit_results):
    """Generate detailed technical findings report"""

    report = {
        "audit_metadata": {
            "date": datetime.now().isoformat(),
            "auditor": "ReputeAPI Security Assessment",
            "methodology": "Automated DNS analysis with manual validation",
            "scope": "Email authentication infrastructure"
        },
        "domain_findings": [],
        "recommendations": [],
        "compliance_matrix": {}
    }

    for result in audit_results:
        domain_report = {
            "domain": result["domain"],
            "overall_score": result["security_score"],
            "risk_classification": result["risk_level"],
            "detailed_findings": {
                "spf_analysis": analyze_spf_details(result),
                "dkim_analysis": analyze_dkim_details(result),
                "dmarc_analysis": analyze_dmarc_details(result),
                "dns_security": analyze_dns_security(result)
            },
            "remediation_priority": calculate_remediation_priority(result),
            "estimated_effort": estimate_implementation_effort(result)
        }

        report["domain_findings"].append(domain_report)

    return report

🎯 Advanced Analysis Features¢

Trend AnalysisΒΆ

def analyze_security_trends(domain, historical_days=90):
    """Analyze security posture trends over time"""

    # Get historical data
    history = client.get_history(domain, days=historical_days)

    trends = {
        "score_trend": calculate_score_trend(history),
        "improvement_rate": calculate_improvement_rate(history),
        "regression_alerts": identify_regressions(history),
        "prediction": predict_future_score(history)
    }

    return trends

def calculate_score_trend(history):
    """Calculate trend direction and velocity"""
    if len(history) < 2:
        return {"direction": "insufficient_data"}

    scores = [h["score"] for h in history]

    # Simple linear regression
    x = list(range(len(scores)))
    slope = calculate_slope(x, scores)

    if slope > 1:
        direction = "improving"
    elif slope < -1:
        direction = "degrading"
    else:
        direction = "stable"

    return {
        "direction": direction,
        "velocity": abs(slope),
        "current_score": scores[-1],
        "previous_score": scores[0],
        "change": scores[-1] - scores[0]
    }

Competitive BenchmarkingΒΆ

def benchmark_against_industry(audit_results, industry="technology"):
    """Compare client against industry benchmarks"""

    # Industry benchmark data (anonymized)
    industry_benchmarks = {
        "technology": {"average_score": 78.5, "top_quartile": 89.2},
        "financial": {"average_score": 85.1, "top_quartile": 94.3},
        "healthcare": {"average_score": 72.3, "top_quartile": 86.7},
        "retail": {"average_score": 68.9, "top_quartile": 82.1}
    }

    client_average = sum(r["security_score"] for r in audit_results) / len(audit_results)
    benchmark = industry_benchmarks.get(industry, industry_benchmarks["technology"])

    comparison = {
        "client_score": client_average,
        "industry_average": benchmark["average_score"], 
        "industry_top_quartile": benchmark["top_quartile"],
        "percentile": calculate_percentile(client_average, industry),
        "gap_to_average": benchmark["average_score"] - client_average,
        "gap_to_top_quartile": benchmark["top_quartile"] - client_average
    }

    return comparison

πŸš€ Implementation TimelineΒΆ

Week 1: Setup & Initial AssessmentΒΆ

  • Configure ReputeAPI access and authentication
  • Gather client domain inventory
  • Conduct initial bulk validation
  • Identify critical vulnerabilities

Week 2: Deep AnalysisΒΆ

  • Perform detailed risk assessment
  • Map findings to compliance standards
  • Analyze historical trends (if available)
  • Benchmark against industry standards

Week 3: Reporting & RecommendationsΒΆ

  • Generate executive summary report
  • Create detailed technical findings
  • Develop prioritized remediation plan
  • Calculate ROI and business impact

Week 4: Client PresentationΒΆ

  • Present findings to stakeholders
  • Provide implementation guidance
  • Set up ongoing monitoring (optional)
  • Schedule follow-up assessments

πŸ’° Pricing & Business ModelΒΆ

Service PackagesΒΆ

Package Domains Price Features
Basic Audit 1-10 $2,500 Standard assessment, basic reporting
Comprehensive 11-50 $7,500 Advanced analysis, compliance mapping
Enterprise 50+ Custom Full suite, ongoing monitoring

Value PropositionΒΆ

  • Cost of breach prevention: $2.3M average savings
  • Compliance cost avoidance: $500K in audit penalties
  • Operational efficiency: 80% reduction in manual security checks
  • Competitive advantage: Differentiated security service offering

πŸ“š Resources & ToolsΒΆ

Audit TemplatesΒΆ

Automation ScriptsΒΆ

Integration GuidesΒΆ


Ready to start offering domain audits? Begin with our Quick Start Guide or contact our sales team for a custom demo.