Domain Audit Use CaseΒΆ
Cybersecurity firms and managed service providers (MSPs) use ReputeAPI to conduct comprehensive email security audits for their clients. This use case covers systematic domain validation, risk assessment, and compliance reporting.
π― OverviewΒΆ
Business GoalΒΆ
Provide clients with detailed email security assessments that identify vulnerabilities, quantify risk, and deliver actionable remediation plans.
Key BenefitsΒΆ
- Systematic assessment of email security posture
- Quantified risk scoring with industry benchmarks
- Detailed remediation plans with implementation guidance
- Compliance reporting for SOC2, ISO27001, and other standards
- Competitive differentiation through advanced security analysis
Target IndustriesΒΆ
- Cybersecurity consulting firms
- Managed security service providers (MSSPs)
- IT consulting companies
- Compliance auditing firms
- Penetration testing companies
π Audit WorkflowΒΆ
Phase 1: Discovery & PlanningΒΆ
# 1. Collect client domains for assessment
client_domains = [
"client-company.com",
"marketing.client-company.com",
"support.client-company.com",
"mail.client-company.com"
]
# 2. Initialize audit session
audit_session = {
"client_id": "client_123",
"audit_date": datetime.now(),
"domains": client_domains,
"scope": "comprehensive", # basic, comprehensive, compliance
"standards": ["SOC2", "ISO27001"]
}
Phase 2: Bulk Domain ValidationΒΆ
import reputeapi
from datetime import datetime
import json
# Initialize ReputeAPI client
client = reputeapi.Client(api_key="your_api_key")
def conduct_bulk_audit(domains):
"""Perform comprehensive audit of multiple domains"""
results = []
for domain in domains:
try:
# Get comprehensive security analysis
validation = client.check(domain)
# Calculate risk metrics
risk_assessment = calculate_risk_score(validation)
# Generate recommendations
recommendations = generate_recommendations(validation)
audit_result = {
"domain": domain,
"timestamp": datetime.now().isoformat(),
"security_score": validation.score,
"risk_level": risk_assessment["level"],
"findings": validation.findings,
"recommendations": recommendations,
"compliance_status": check_compliance(validation)
}
results.append(audit_result)
except Exception as e:
print(f"Error auditing {domain}: {e}")
continue
return results
# Execute audit
audit_results = conduct_bulk_audit(client_domains)
Phase 3: Risk Assessment & ScoringΒΆ
def calculate_risk_score(validation):
"""Calculate comprehensive risk score based on findings"""
risk_factors = {
"spf_missing": 30,
"dkim_missing": 25,
"dmarc_missing": 35,
"weak_spf_policy": 15,
"weak_dmarc_policy": 20,
"dns_vulnerabilities": 25,
"configuration_errors": 10
}
total_risk = 0
findings = []
# Analyze SPF configuration
if not validation.spf.valid:
total_risk += risk_factors["spf_missing"]
findings.append({
"type": "SPF Missing",
"severity": "High",
"description": "No SPF record found",
"impact": "Email spoofing vulnerability"
})
elif validation.spf.policy == "~all": # SoftFail
total_risk += risk_factors["weak_spf_policy"]
findings.append({
"type": "Weak SPF Policy",
"severity": "Medium",
"description": "SPF uses soft fail (~all)",
"impact": "Reduced protection against spoofing"
})
# Analyze DKIM configuration
if not validation.dkim.valid:
total_risk += risk_factors["dkim_missing"]
findings.append({
"type": "DKIM Missing",
"severity": "High",
"description": "No valid DKIM signature found",
"impact": "Message authenticity cannot be verified"
})
# Analyze DMARC configuration
if not validation.dmarc.valid:
total_risk += risk_factors["dmarc_missing"]
findings.append({
"type": "DMARC Missing",
"severity": "Critical",
"description": "No DMARC policy found",
"impact": "No protection against email spoofing"
})
elif validation.dmarc.policy in ["none", "quarantine"]:
total_risk += risk_factors["weak_dmarc_policy"]
findings.append({
"type": "Weak DMARC Policy",
"severity": "Medium",
"description": f"DMARC policy is '{validation.dmarc.policy}'",
"impact": "Limited protection against spoofing"
})
# Determine risk level
if total_risk >= 80:
risk_level = "Critical"
elif total_risk >= 60:
risk_level = "High"
elif total_risk >= 30:
risk_level = "Medium"
else:
risk_level = "Low"
return {
"score": total_risk,
"level": risk_level,
"findings": findings,
"max_possible": 100
}
Phase 4: Compliance MappingΒΆ
def check_compliance(validation):
"""Map findings to compliance standards"""
compliance_mapping = {
"SOC2": {
"CC6.1": check_access_controls(validation),
"CC6.7": check_transmission_integrity(validation),
"CC7.1": check_system_boundaries(validation)
},
"ISO27001": {
"A.13.2.1": check_information_transfer(validation),
"A.13.2.3": check_electronic_messaging(validation)
},
"NIST": {
"SC-8": check_transmission_confidentiality(validation),
"SC-20": check_secure_name_resolution(validation)
}
}
compliance_status = {}
for standard, controls in compliance_mapping.items():
passed_controls = sum(1 for result in controls.values() if result)
total_controls = len(controls)
compliance_percentage = (passed_controls / total_controls) * 100
compliance_status[standard] = {
"percentage": compliance_percentage,
"status": "Compliant" if compliance_percentage >= 80 else "Non-Compliant",
"controls": controls
}
return compliance_status
def check_access_controls(validation):
"""SOC2 CC6.1 - Logical access security measures"""
return validation.spf.valid and validation.dkim.valid
def check_transmission_integrity(validation):
"""SOC2 CC6.7 - Transmission data integrity"""
return validation.dkim.valid and validation.dmarc.valid
def check_information_transfer(validation):
"""ISO27001 A.13.2.1 - Information transfer policies"""
return (validation.dmarc.valid and
validation.dmarc.policy in ["quarantine", "reject"])
π Audit ReportingΒΆ
Executive Summary ReportΒΆ
def generate_executive_summary(audit_results):
"""Generate executive-level audit summary"""
total_domains = len(audit_results)
high_risk_domains = len([r for r in audit_results if r["risk_level"] in ["Critical", "High"]])
average_score = sum(r["security_score"] for r in audit_results) / total_domains
# Industry benchmarking
industry_benchmark = get_industry_benchmark(client_industry)
summary = f"""
# Email Security Audit - Executive Summary
## Key Findings
- **Total Domains Assessed**: {total_domains}
- **Average Security Score**: {average_score:.1f}/100
- **High Risk Domains**: {high_risk_domains} ({high_risk_domains/total_domains*100:.1f}%)
- **Industry Benchmark**: {industry_benchmark} (You are {"above" if average_score > industry_benchmark else "below"} average)
## Critical Issues Identified
{generate_critical_issues_summary(audit_results)}
## Recommended Actions
1. **Immediate (0-30 days)**: Implement DMARC policies on high-risk domains
2. **Short-term (1-3 months)**: Strengthen SPF configurations
3. **Medium-term (3-6 months)**: Deploy DKIM across all domains
## Business Impact
- **Estimated Risk Reduction**: 85% with full remediation
- **Compliance Improvement**: SOC2 compliance increases from 45% to 95%
- **ROI**: $2.3M in prevented breach costs over 3 years
"""
return summary
Technical Details ReportΒΆ
def generate_technical_report(audit_results):
"""Generate detailed technical findings report"""
report = {
"audit_metadata": {
"date": datetime.now().isoformat(),
"auditor": "ReputeAPI Security Assessment",
"methodology": "Automated DNS analysis with manual validation",
"scope": "Email authentication infrastructure"
},
"domain_findings": [],
"recommendations": [],
"compliance_matrix": {}
}
for result in audit_results:
domain_report = {
"domain": result["domain"],
"overall_score": result["security_score"],
"risk_classification": result["risk_level"],
"detailed_findings": {
"spf_analysis": analyze_spf_details(result),
"dkim_analysis": analyze_dkim_details(result),
"dmarc_analysis": analyze_dmarc_details(result),
"dns_security": analyze_dns_security(result)
},
"remediation_priority": calculate_remediation_priority(result),
"estimated_effort": estimate_implementation_effort(result)
}
report["domain_findings"].append(domain_report)
return report
π― Advanced Analysis FeaturesΒΆ
Trend AnalysisΒΆ
def analyze_security_trends(domain, historical_days=90):
"""Analyze security posture trends over time"""
# Get historical data
history = client.get_history(domain, days=historical_days)
trends = {
"score_trend": calculate_score_trend(history),
"improvement_rate": calculate_improvement_rate(history),
"regression_alerts": identify_regressions(history),
"prediction": predict_future_score(history)
}
return trends
def calculate_score_trend(history):
"""Calculate trend direction and velocity"""
if len(history) < 2:
return {"direction": "insufficient_data"}
scores = [h["score"] for h in history]
# Simple linear regression
x = list(range(len(scores)))
slope = calculate_slope(x, scores)
if slope > 1:
direction = "improving"
elif slope < -1:
direction = "degrading"
else:
direction = "stable"
return {
"direction": direction,
"velocity": abs(slope),
"current_score": scores[-1],
"previous_score": scores[0],
"change": scores[-1] - scores[0]
}
Competitive BenchmarkingΒΆ
def benchmark_against_industry(audit_results, industry="technology"):
"""Compare client against industry benchmarks"""
# Industry benchmark data (anonymized)
industry_benchmarks = {
"technology": {"average_score": 78.5, "top_quartile": 89.2},
"financial": {"average_score": 85.1, "top_quartile": 94.3},
"healthcare": {"average_score": 72.3, "top_quartile": 86.7},
"retail": {"average_score": 68.9, "top_quartile": 82.1}
}
client_average = sum(r["security_score"] for r in audit_results) / len(audit_results)
benchmark = industry_benchmarks.get(industry, industry_benchmarks["technology"])
comparison = {
"client_score": client_average,
"industry_average": benchmark["average_score"],
"industry_top_quartile": benchmark["top_quartile"],
"percentile": calculate_percentile(client_average, industry),
"gap_to_average": benchmark["average_score"] - client_average,
"gap_to_top_quartile": benchmark["top_quartile"] - client_average
}
return comparison
π Implementation TimelineΒΆ
Week 1: Setup & Initial AssessmentΒΆ
- Configure ReputeAPI access and authentication
- Gather client domain inventory
- Conduct initial bulk validation
- Identify critical vulnerabilities
Week 2: Deep AnalysisΒΆ
- Perform detailed risk assessment
- Map findings to compliance standards
- Analyze historical trends (if available)
- Benchmark against industry standards
Week 3: Reporting & RecommendationsΒΆ
- Generate executive summary report
- Create detailed technical findings
- Develop prioritized remediation plan
- Calculate ROI and business impact
Week 4: Client PresentationΒΆ
- Present findings to stakeholders
- Provide implementation guidance
- Set up ongoing monitoring (optional)
- Schedule follow-up assessments
π° Pricing & Business ModelΒΆ
Service PackagesΒΆ
| Package | Domains | Price | Features |
|---|---|---|---|
| Basic Audit | 1-10 | $2,500 | Standard assessment, basic reporting |
| Comprehensive | 11-50 | $7,500 | Advanced analysis, compliance mapping |
| Enterprise | 50+ | Custom | Full suite, ongoing monitoring |
Value PropositionΒΆ
- Cost of breach prevention: $2.3M average savings
- Compliance cost avoidance: $500K in audit penalties
- Operational efficiency: 80% reduction in manual security checks
- Competitive advantage: Differentiated security service offering
π Resources & ToolsΒΆ
Audit TemplatesΒΆ
Automation ScriptsΒΆ
Integration GuidesΒΆ
- CRM Integration - Sync findings with customer records
- Ticketing Systems - Create remediation tickets
- Dashboards - Client-facing security dashboards
Ready to start offering domain audits? Begin with our Quick Start Guide or contact our sales team for a custom demo.